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2 QUINTANA ET AL.

Mild cognitive impairment (MCI) is a transitional state between normal aging and Alzheimer disease (AD).
Artificial neural networks (ANNs) are computational tools that can provide valuable support to clinical deci-
sion making, classification, and prediction of cognitive functioning. The aims of this study were to develop, train,
and explore and develop the ability of ANNs to differentiate MCI and AD, and to study the relevant variables
in MCI and AD diagnosis. The sample consisted of 346 controls and 79 MCI and 97 AD patients. A linear
discriminant analysis (LDA) and ANNs with 12 input neurons (10 subtests of a neuropsychological test, the
abbreviated Barcelona Test; age; and education), 4 hidden neurons, and output neuron (diagnosis) were used to
classify the patients. The ANNs were superior to LDA in its ability to classify correctly patients (100–98.33% vs.
96.4–80%, respectively) and showed better predictive performance. Semantic fluency, working and episodic mem-
ory and education showed up as the most significant and sensitive variables for classification. Our results indicate
that ANNs have an excellent capacity to discriminate MCI and AD patients from healthy controls. These findings
provide evidence that ANNs can be a useful tool for the analysis of neuropsychological profiles related to clinical
syndromes.

Keywords: Artificial neural networks; Mild cognitive impairment; Alzheimer disease; Assessment classification.

Improvements in health care over the past 50 years
have extended average life expectancy, which has
resulted in a substantial increase in the numbers of
individuals over 65 years of age (Hebert, Beckett,
Scherr, & Evans, 2001). This fact is associated
with an increase of age-related diseases such as
Alzheimer disease (AD) and other dementias.

Early diagnosis, in which the concept of mild
cognitive impairment (MCI) plays a fundamen-
tal role, is a crucial aspect in the treatment of
AD. MCI is considered to be a state between
normal cognition and dementia, characterized by
deficits not explainable by age, educational back-
ground, or medical illness (Petersen, 2003). Several
studies (Busse, Hensel, Gühne, Angermeyer, &
Riedel-Heller, 2006; Gauthier et al., 2006; Manly
et al., 2008; Visser, Kester, Jolles, & Verhey, 2006)
have demonstrated that MCI is associated with
an increased risk of developing dementia, usually
AD. Nevertheless, this concept is heterogeneous
(DeCarli, 2003; Petersen et al., 2001) because many
factors converge in a possible progression to AD
diagnosis and other diseases.

Several markers of AD conversion have been
studied in the last few years, such as the presence
of the apolipoprotein E (APOE) ε4 allele (Fleisher
et al., 2007), phosphorylated tau levels in the cere-
brospinal fluid (Ewers et al., 2007), reduction in
the hippocampal and entorhinal cortex volumes
(Jack et al., 2008; Risacher et al., 2009), and amy-
loid deposition (Okello et al., 2009). As neuropsy-
chological markers, episodic memory and execu-
tive functions are particularly well-studied predic-
tors of conversion (Landau et al., 2010; Rozzini
et al., 2007; Tabert et al., 2006). Neuropsychological
assessment is, therefore, essential, not only in the
diagnosis but also in the monitoring of conversion
to dementia. The study of the appropriate neuro-

psychological test and technique to support clin-
ical decisions is, therefore, a relevant issue in the
prediction of developing dementia.

Artificial neural networks (ANNs) have been
proposed as viable computational tools in order to
provide support to clinical decision making, classi-
fication, and the prediction of cognitive functioning
(Lisboa & Taktak, 2006). ANNs are computing
paradigms, inspired by neurosciences (Hebb, 1949),
where the organization and storage of informa-
tion are connected by computational units or nodes
to allow signals to travel through the network.
The models reflect the highly interactive process-
ing functions of the human brain and are able
to modify their internal structure in relation to a
function objective. Like the brain, ANNs recognize
patterns, manage data, and learn (Buscema et al.,
2004; Di Luca et al., 2005). In statistical terms,
ANNs are nonparametric models that carry out
estimations of the so-called free model (Perez &
Martin, 2003). They can provide several advantages
with respect to conventional statistical models. In
fact, a number of studies have reported their superi-
ority to other statistical approaches such as logistic
regression or linear discriminant analysis (LDA;
French, Dawson, & Dobbs, 1997; Parsons, Rizzo,
& Buckwalter, 2004).

A number of different areas of science, includ-
ing medicine, biology, and psychology, have ben-
efited from the applications of ANNs. Their abil-
ity to accurately classify and recognize patterns
has encouraged researchers to employ them in
solving numerous clinical problems. In medicine,
the clinical applications include diagnosis and
outcome prediction, clinical pharmacology, and
neuroimaging amongst many others (Batx, 1995;
Ramesh, Kambhampati, Monson, & Drew, 2004).
In neurology, ANNs have been used for the
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ARTIFICIAL NEURAL NETWORKS IN NEUROPSYCHOLOGY 3

diagnosis and classification of neurodegenerative
disorders with extrapyramidal features (Litvan et
al., 1996). In dementia, AD is a good model for
ANN application due to the fact that the course
of the disease is nonlineal; progression is gener-
ally slower in the early stages and more rapid
in the middle phase (Doody, Massman, & Dunn,
2001; Tandon, Adak, & Kaye, 2006). ANNs have
been successfully implemented in the classifica-
tion of pharmacological responders to donepezil
in a group of AD patients (Mecocci et al.,
2002), identifying the time-course of the disease
in longitudinal data (Tandon et al., 2006), and
studying the gender-related differences in clinical
presentation (Grossi, Massini, Buscema, Savarè, &
Maurelli, 2005). They have been employed as
a practical analytic tool for electrophysiological
data (Buscema, Rossini, Babiloni, & Grossi, 2007;
Lehmann et al., 2007), neurofunctional imaging
(DeFigueiredo et al., 1995; Horn et al., 2009; Page,
Howard, O’Brien, Buxton-Thomas, & Pickering,
1996), biomarkers (Di Luca et al., 2005), and
neuropathological findings in the prediction of
AD (Buscema et al., 2004; Grossi, Buscema,
Snowdon, & Antuono, 2007). In animal models,
Leighty et al. (2008) applied ANNs in order to
examine behavioral data in AD transgenic mice.
Only one study where ANNs were used to iden-
tify the predictive values of risk factors on the
conversion of amnestic MCI to AD has been
described (Tabaton et al., 2010). This study sup-
ports the utility of ANN analysis in the inter-
pretation of data from heterogeneous and distinct
sources.

Although ANNs have been applied to various
areas of neuroscience research there are, to our
knowledge, no reports of MCI and AD with cogni-
tive measures. In this study, our primary aim was to
explore and develop the ability of ANNs to differ-
entiate healthy controls and MCI and AD patients.
The second aim was to study the more relevant
variables in MCI and AD diagnosis.

METHOD

Participants

A whole sample of 522 subjects from the
Neuronorma project took part in this study. They
were divided into three groups: 346 healthy elderly
participants, 79 patients diagnosed with MCI, and
97 patients diagnosed with AD.

The Spanish Multicenter Normative Studies
(Neuronorma project) was designed to provide

normative data for people aged over 49 years for
commonly used neuropsychological tests (Peña-
Casanova et al., 2009). This project was performed
in nine services of neurology and units of neuropsy-
chology in different Spanish regions.

Healthy elderly participants were recruited from
a variety of sources such as: (a) spouses of patients
evaluated at the participating centers, (b) various
senior citizen activity centers, and (c) by word of
mouth. MCI and AD patients were consecutively
recruited at neurology services from the participat-
ing centers.

Three hundred and forty six healthy elderly con-
trols (age range: 50–90 years) were studied. Entry
criteria included consecutive individuals according
to the following inclusion and exclusion criteria.
Inclusion criteria were: (a) signed informed consent,
(b) subjects of both genders aged over 49 years,
(c) Spanish speakers with at least a minimal capac-
ity in writing, (d) community dwelling and inde-
pendent functioning individuals as measured by
the Interview for Deterioration of Daily Living
in Dementia (IDDD; Teunisse, Derix, & Cléber,
1991), and (e) absence of cognitive impairment,
measured by the Mini-Mental State Examination
(MMSE; Folstein, Folstein, & McHugh, 1975),
adjusted for age and education.

Exclusion criteria were: (a) personal history of
central nervous disease possibly causing neuropsy-
chological deficits (e.g., stroke, epilepsy, move-
ment disorder, multiple sclerosis, brain tumor,
severe head trauma), (b) score of 4 or more on
the Modified Ischemia Scale (Rosen, Terry, Fuld,
Katzman, & Peck, 1980), (c) history of alcohol or
other psychotropic substance abuse, (d) presence
of active or uncontrolled systemic diseases associ-
ated with cognitive impairment (e.g., diabetes mel-
litus, hypothyroidism, B12 deficiency), (e) history of
psychiatric diseases (e.g., major depression, bipo-
lar mood disorder, psychosis), and (f) presence of
severe sensorial deficits (loss of vision and/or hear-
ing) that might have impeded the administration of
cognitive tests.

Sample characteristics, recruitment procedures,
and general methods of the Neuronorma project
have been reported in a previous paper (Peña-
Casanova et al., 2009). Seventy-nine patients
were diagnosed with MCI following IPA–WHO
(International Psychogeriatric Association–World
Health Organization; Levy, 1994) criteria. The
above-mentioned criteria are the following: (a) no
age restriction (in our project the subjects had to
be at least 50 years old); (b) decline of cogni-
tive capacity affirmed by the patient and/or infor-
mant; (c) gradual decline and of minimal duration
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4 QUINTANA ET AL.

of 6 months; (d) any of the following cognitive
functions could be affected: memory and learning,
attention and concentration, thinking, language
or visuospatial functioning; (e) neuropsychological
performance more than 1 standard deviation below
the age and education norms in well-standardized
neuropsychological tests; (f) the disorder does not
have sufficient intensity to establish the diagnosis of
dementia, nor does delirium exist; (g) there do not
exist any cerebral, systemic, or psychiatric processes
that could explain the symptoms. In our study,
the test selected as neuropsychological test was
the abbreviated Barcelona Test, being a test that
assesses each of the cognitive functions that can be
affected in the MCI, such as memory and learning,
attention and concentration, thinking, language, or
visuospatial functioning.

In our study we considered that MCI equated to
Stage 3 of the GDS (Global Deterioration Scale;
Reisberg, Ferris, de Leon, & Crook, 1972). It is
crucial to indicate that diagnosis of MCI was
done using clinical criteria alone; thus it is a non-
psychometric diagnosis, and therefore the score in
the Barcelona Test must be taken as another mea-
sure, but not the only measure. The diagnosis of
MCI does not focus only on the score of a neu-
ropsychological test.

Ninety-seven patients with a diagnosis of
probable AD fulfilled DSM–IV (Diagnostic and
Statistical Manual for Mental Disorders–Fourth
Edition) criteria (American Psychiatric Association,
1994) and NINCDS-ADRDA (National Institute
of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders
Association) criteria (McKhann et al., 1984); they
were at Stages 4 and 5 in the GDS. Subjects rated
GDS 6 and 7 were excluded. The GDS scale used
in this study includes stages of cognitive impair-
ment from “cognitive normality” up to the most
advanced phases of dementia. In no case was it
used to distinguish between MCI and AD.

The majority (95%) of study participants were
right-handed, as confirmed by the Edinburgh
Handedness Inventory (Oldfield, 1971). The ethnic
background of all participants was Caucasian, and
all were living in Spain.

Approval for the study was obtained from
the Research Ethics Committee of the Municipal
Institute of Medical Care of Barcelona, Spain and
the participating centers. The study was conducted
in accordance with the Declaration of Helsinki
and its subsequent amendments and the European
Union regulations concerning medical research. All
participants signed an informed consent before
being tested; they received no financial reimburse-
ment or any other compensation.

Neuropsychological evaluation

The MMSE, a global cognition measure (Folstein
et al., 1975) in a validated Spanish version
(Blesa et al., 2001) was used to select study
participants. The study cutoff, adjusted for age
and education, was 24. Functional changes were
evaluated by the IDDD (Teunisse et al., 1991)
in its validated Spanish version (Böhm et al.,
1998).

The abbreviated Barcelona Test (a-BT) was
administered as part of a larger battery of
neuropsychological measures in the Neuronorma
project (Peña-Casanova et al., 2009). Testing
and scoring were performed by neuropsycholo-
gists specifically trained for this project. Standard
administration and scoring procedures were fol-
lowed as outlined in the original a-BT man-
ual (Peña-Casanova, 1990). This test has been
recently described in detail (Quintana et al., 2011).
Briefly, it consists of 41 subtests that generate 55
variables, which encompass a basic spectrum of
the neuropsychological functions: language, atten-
tion, mental tracking, working memory, repetition,
confrontation naming, semantic fluency, verbal
comprehension, reading, writing, praxis, visual per-
ceptual functions, verbal memory (story), visual
memory (figures), numerical reasoning, concept
formation, sustained attention, speed, and visu-
ospatial and motor skills. It takes only 30–45 min-
utes to administer.

As to psychometric characteristics, this test
has shown higher convergent validity with the
Alzheimer Disease Assessment Scale–cognitive
part (ADAS-Cog; Peña-Casanova et al., 1997)
and excellent test–retest and inter-rater reliability
(Serra-Mayoral & Peña-Casanova, 2006).

Data analysis

The Statistical Package for Social Sciences (SPSS
v.18) was used to investigate group differences
in demographic and neuropsychological scores.
Analysis of variance (ANOVA) with post hoc anal-
ysis (Bonferroni) was used to compare sociode-
mographic and neuropsychological data amongst
groups. Gender differences were assessed by means
of chi-square tests. The significance level was set
at .05.

LDA with a stepwise method was performed to
compare the performance of the ANNs. Software
Easy NN-Plus (Easy Neural Network Plus, v.10;
Neural Planner Software, 2010) was used to
simulate ANNs.
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ARTIFICIAL NEURAL NETWORKS IN NEUROPSYCHOLOGY 5

ANNs

ANNs are adaptive models, inspired by the
functioning processes in the human brain, for the
analysis of data (Tabaton et al., 2010). In addition,
a nonlinear pattern recognition system and mas-
sively parallel distributed processor make up simple
processing units (Haykin, 2008).

We applied supervised ANNs whose process-
ing result (the desired output) had already been
defined. Multilayer perceptron (MLP), as described
by Rumelhart and McClelland (1986), was used
for the analysis. It is defined by different, intercon-
nected layers of nodes characterized by a nonlinear
function, generally of the sigmoidal type, trained
by backpropagation error. It includes an additional
layer between the input and output, which permits
the classification of nonseparable linear patterns. In
addition, it involves the modification of the learn-
ing rule to enable the teaching of hidden neurons
(Pérez & Martin, 2003). This model is widely used
in the nonseparable, linear classification of patterns
and function prediction.

The nodes, also known as processing elements,
and the connections are fundamental elements of
ANNs. Each node is connected to other nodes to
link communications with a numerical value, also
known as weights (w). The knowledge acquired
is represented in the connection weights. If w is
more than zero, the connection is excitatory; if it is
less than zero, it is inhibitory (Basheer & Hajmeer,
2000). In addition, it requires a rule, the so-called
activation function, to combine the inputs. The sig-
moid function logistic type is the most widely used
activation function.

The nodes are distributed in layers: input, hid-
den, and output. The input layer receives the exter-
nal inputs—that is, the predictor variable values.
In this layer, the received signal is not usually pro-
cessed but is sent instead to the following layer
(Pérez & Martin, 2003). The hidden layer learns to
recode the inputs. The activity of each hidden unit is
determined by the activities of the input units and
the weights between the hidden and output units.
More than one hidden layer can be used. The last
layer is the output layer; the activation levels of the
neurons in this layer are considered to be the output
of the neural network (Dayhoff & DeLeo, 2001).

With the objective of minimizing the function
error and adjusting the weights from the input
to the hidden units, the backpropagation error
algorithm, known as a generalization of the delta
rule, was used. Although this algorithm was ini-
tially developed by Werbos (1974), Rumelhart and
McClelland (1986) claimed its popularity. The
backpropagation error algorithm has two phases.

In the forward phase, the synaptic weights of the
network are fixed, and the input signal is propa-
gated through the network, layer by layer, until it
reaches the output (Haykin, 2008). The error at the
output unit is therefore calculated. In the backward
phase, the errors between the desired output and the
network are propagated layer by layer in the back-
ward direction, and the error at the hidden nodes is
calculated. This process is iterative.

It is advisable to select the input variables in
order to eliminate background noise and achieve
an optimum learning function. Indiscriminate use
of neurons can, moreover, cause the network to
memorize the training data and generalize—that is
to say, it cannot give a suitable answer when new
data are presented (Pérez & Martín, 2003). Taking
into account these aspects, we selected input vari-
ables with the best discrimination amongst the three
diagnosis groups studied. Ten a-BT subtests were
included: temporal orientation, backward series,
semantic fluency, immediate and delayed story
memory, free and cued recall, visual memory, sim-
ilarities, and digit symbol. The sociodemographic
variables with the greatest influence on cognitive
performance, age, and years of education were also
incorporated.

Our ANN had three neuron layers: input, hid-
den, and output (see Figure 1). The input layer
had 12 neurons: age and years of education, and
a selection from a previously presented a-BT sub-
test. The entire distribution of the input variables
was employed. The single hidden layer had four
nodes. The output layer had one neuron: the diag-
nosis. This neural network architecture was selected
by choosing an optimal number of neurons in the
hidden layer. All inputs and outputs were scaled
and offset to the range 0.0 to 1.0. In an ANN
analysis, quantitative variables are used to predict
a categorical variable—in this case, the diagnosis.

The neuron learning consists of the modification
of the weight’s vector, w, so that the output will be
appropriate for the task. These weights can be both
positive (excitatory) and negative (inhibitory). This
algorithm is repetitive. The equation of the weight’s
modification is the following:

�pwij = γδiOj

where: wij = weight between neuron i and neuron j;
γ = increase in learning in every step; δi = neuron i
error; and Oj = pattern output.

Once the patterns are presented, the weights are
updated so that a cycle of learning is completed.
This process attempts to minimize the following
function of error:

E =p1/2k(dpk − xpk)2
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6 QUINTANA ET AL.

Figure 1. Graphical representation of a neural network, show-
ing input layer (cognitive measures, age, and education), hidden
layer, and output layer (the diagnosis).

where: p1/2k = minimization of the error in every
nodule p in the value k; dpk = desired output neuron
of pattern p in output neuron; and xpk = real output
of pattern p in output neuron.

Each neuron has a nonlinear activation function,
usually a logistic one. The most popular activation
function is the sigmoid:

f (s) = 1
1 + exp(−bx)

The learning rate and momentum parameters were
set to 0.6 and 0.8, respectively, for all analyses. Prior
to training, networks were initialized by randomly
setting connection weights in the range from –.5 to
.5. A priori, we did not set the number of learning
cycles or interaction in the training phase.

As for the hidden layer, we decided to include
only one layer. Due to the problem of overad-
justment, the minimum number of hidden neurons
should be employed in order to obtain the network
structure showing the optimum generalized perfor-
mance. One hidden layer with four neurons was,
therefore, selected.

The importance of each input variable was
assessed during the training phrase. The input
importance is a parameter expressing the magni-
tude of the activation of a given node during this
phase. The magnitude of the activation is arbitrar-
ily expressed by a number that ranges from zero to
infinity (Grossi et al., 2007). The equation of the
input importance is the following:

Ri = 1/K ∗
K∑

c

N∑

j

wc,j,i

where: Ri = the mean importance of the ith input
variable of the dataset; K = the number of classi-
fiers used in the training phase; N = the number of
hidden units of the trained K classifiers; wc,j,i = the
trained weight of the cth classifier, connecting the
ith input to the jth hidden unit.

Another evaluated parameter was the sensi-
tivity of each input variable. Sensitivity (S) is
understood as the variation of the output vari-
able before changes in input values. It is detailed
below:

SQ
X = X

Q
∂Q
∂X

where: X = the matrix of input variables; Q = the
vector of loading coefficients of each input vari-
able in relation to the output variable; ∂Q = the first
derivate to zero of Q; and ∂X = the first derivative
to zero of X.
This general procedure was applied in three ANN
substudies:

• Substudy 1: The whole sample (three diagnosis
groups)

• Substudy 2: Healthy controls and MCI patients
• Substudy 3: Healthy controls and AD patients

We decided to apply ANN analysis to a more com-
plex classification issue: the first substudy, which

D
ow

nl
oa

de
d 

by
 [

Jo
rd

i P
eñ

a-
C

as
an

ov
a]

 a
t 0

2:
29

 1
4 

D
ec

em
be

r 
20

11
 



ARTIFICIAL NEURAL NETWORKS IN NEUROPSYCHOLOGY 7

included the three diagnosis groups. Furthermore,
we included two common diagnostic dichotomies:
healthy controls versus MCI, and healthy controls
versus AD.

Validation protocol

In order to increase the probability of general-
ization, and to avoid the overfitting of the predictive
performance, we used a standard training set for the
network and a test set to validate its predictive per-
formance. This procedure is indispensable in order
to verify the model’s ability to generalize the results
reached in the testing phase of each model (Grossi
et al., 2007).

In the training phase, the ANNs learn to asso-
ciate the input variables with those that are indi-
cated as targets (Buscema et al., 2004). The testing
phase is used to assess the predictive ability of the
network for generations of future practical applica-
tions.

In Substudy 1, the total sample of 522 subjects
was randomly subdivided into two subsamples: the
training phase (n = 432) and the prediction phase
(testing; n = 90 subjects, 30 from each group: con-
trols, MCI, and AD, respectively). In Substudy 2,
we excluded the AD patients. This sample included
425 subjects in the training phase and 60 sub-
jects (30 healthy controls and 30 MCI patients)
in the testing phase. Finally, in Substudy 3, the
training subsample had 443 subjects and the test-
ing subsample 60 subjects (30 controls and 30 AD
patients).

RESULTS

Sample characteristics

Demographic data, MMSE, IDDD, and a-BT
scores are given in Table 1. Age and years of edu-
cation were unequally distributed across groups.
Participants in the control group were signifi-
cantly younger and more highly educated than
MCI and AD patients. However, in post hoc anal-
ysis (Bonferroni) these patients did not differ in
age and education. The slight difference between
groups in the gender balance was nonsignificant.
Patients’ MMSE scores were, as assumed from
diagnosis of MCI and AD, lower than those for
the control group. The scores in the functional scale
IDDD were distributed according to an expected
pattern—that is to say, with functional normality
in the control group, whereas there were higher
scores in MCI patients, and AD patients presented
functional impairment. All a-BT measures varied
significantly (p < .0001) in the ANOVA analysis.

ANN analysis

In this study, three substudies of ANNs were car-
ried out in order to distinguish healthy controls,
MCI, and AD patients. In the first model, which
included the three diagnosis groups, ANNs cor-
rectly classified 66.67% of subjects (average error
0.02). In addition to evaluating the overall per-
formance rate in discriminating between patients,
the ANN models permitted the definitions of the

TABLE 1
Demographic characteristics and functional and neuropsychological scores for the three groups studied

Control (n = 346) MCI (n = 79) AD (n = 97) Sign.

Age, years 65.04 ± 9.38 72.82 ± 6.53 74.69 ± 7.49 <.0001
Female gender, % 60 57 65 ns
Education, years 10.56 ± 5.46 8.03 ± 4.76 7.49 ± 4.55 <.0001
MMSE 28.80 ± 1.50 25.77 ± 2.22 20.37 ± 3.98 <.0001
IDDD 33.19 ± 0.61 36.01 ± 2.56 48.87 ± 10.12 <.0001
Temporal orientation 22.93 ± 0.40 21.30 ± 3.61 13.29 ± 7.14 <.0001
Backward series 2.92 ± 0.27 2.47 ± 0.68 1.67 ± 1.10 <.0001
Semantic fluency 19.73 ± 5.76 13.58 ± 4.83 9.73 ± 4.07 <.0001
Immediate story memory: free recall 12.98 ± 3.72 7.34 ± 3.31 4.68 ± 2.95 <.0001
Immediate story memory: cued recall 16.62 ± 3.33 11.61 ± 3.62 8.14 ± 3.85 <.0001
Delayed story memory: free recall 13.01 ± 4.55 5.43 ± 4.34 2.00 ± 3.16 <.0001
Delayed story memory: cued recall 16.41 ± 3.71 9.72 ± 4.58 5.15 ± 4.62 <.0001
Visual memory 10.09 ± 3.64 4.48 ± 2.55 2.03 ± 2.49 <.0001
Similarities 8.17 ± 2.35 6.05 ± 2.07 4.65 ± 2.79 <.0001
Digit symbol 23.20 ± 10.36 12.57 ± 6.10 7.18 ± 5.49 <.0001

Note. Data are presented in the form: mean ± standard deviation. MCI = mild cognitive impairment; AD = Alzheimer’s disease;
MMSE = Mini-Mental State Examination; IDDD = Interview For Deterioration In Daily Living Scale; Sign. = significance. Group
differences were performed by analysis of variance (ANOVA) with post hoc analysis (Bonferroni). Gender percentage comparison was
performed by means chi-square test with continuity correction.
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8 QUINTANA ET AL.

TABLE 2
The importance value for each input variable

Substudy

1 (Whole sample) 2 (Controls & MCI) 3 (Controls & AD)

Temporal orientation 16.6842 59.2188 17.4212
Backward series 39.6352 89.9924 15.8443
Semantic fluency 58.3462a 54.8496 17.9992
Immediate story memory: free recall 24.2160 81.1996 16.7558
Immediate story memory: cued recall 34.4266 82.7592 7.3857
Delayed story memory: free recall 13.7516 72.0599 14.5154
Delayed story memory: cued recall 35.7109 149.2006a 2.5344
Visual memory 21.3789 128.1294 19.8522a

Similarities 25.5158 75.9835 11.5521
Digit symbol 46.7522 87.3062 8.5909
Age 35.0616 51.3258 7.08
Education 30.3801 91.1110 16.8025

Note. MCI = mild cognitive impairment; AD = Alzheimer’s disease.
aThe most important input in ANN (artificial neural networks) model.

net importance of each input in the occurring
model. Table 2 summarizes the importance for
each input variable represented by the addition of
the weight’s absolute values of each input vari-
able toward each neuron in the intermediate layer.
As can be observed, semantic fluency, followed
by digit symbol, accounted for the highest input
importance.

The ANN model also contributes to the sensi-
tivity value of each independent variable, which is
represented as the variation of the output variable
before changes in the input values (see Table 3).
Immediate story memory: cued recall showed the
most sensitive input variable within the ANN
model.

In the second substudy, which included healthy
controls and MCI patients, the ANN model showed
a generalized mean of 98.33%, and only 1 sub-
ject was misclassified. Delayed story memory: cued
recall was the most important input variable. In sen-
sitivity, three input variables presented maximum
values: backward series, delayed story memory cued
recall, and visual memory.

Finally, in the third substudy, the ANN model
correctly classified all subjects (n = 60, 100%). The
input variables in this model showed different
degrees of importance and sensitivity (see Tables 2
and 3). The highest input of importance and sensi-
tivity was reported in visual memory.

Linear discriminant analysis

The results obtained by ANN analysis were com-
pared with those from LDA using the three sub-
studies. Variables within the linear discriminant

function in each case are given in Table 4. The
results from the LDA classifier comparing the ANN
results are shown in Table 5. ANNs showed bet-
ter predictive performance than LDA in Substudy
2 (controls and MCI) and Substudy 3 (controls and
AD) but not in Substudy 1 (controls, MCI, and
AD).

In relation to subjects wrongly classified under
one or the other technique, the results derived from
the individual classifications were analyzed in order
to evaluate the presence of a specific pattern of coin-
cidences. Only 12% of the subjects were wrongly
classified with both techniques. So, this result sug-
gests the almost absolute independence between
both criteria of classification.

DISCUSSION

The purpose of this report was to develop, train,
and explore the ability of artificial neural net-
works to differentiate healthy controls, mild cog-
nitive impairment subjects, and Alzheimer disease
patients. In addition, the ANNs were employed as a
viable model to study the relevant variables in MCI
and AD diagnosis.

Our results support the utility of ANNs as a
new tool in the interpretation of data from het-
erogeneous and distinct sources, with an overall
predictive accuracy ranging from 66.67% to 100%.
Our results showed that ANN analysis was more
efficient than conventional statistical analysis such
as LDA, but not in all the studied situations, since
when three groups were present it was the LDA
that obtained a better result. The first ANN tack-
led the most difficult classification problem due
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ARTIFICIAL NEURAL NETWORKS IN NEUROPSYCHOLOGY 9

TABLE 3
The sensitivity value for each input variable

Substudy Input variable Value

1: Whole sample Immediate story memory: cued recall .90227
Digit-symbol .89658
Semantic fluency .89589
Backward series .89419
Similarities .89386
Education .89061
Temporal orientation .87803
Immediate story memory: free recall .83096
Delayed story memory: free recall .80967
Delayed story memory: cued recall .61686
Age .61134
Visual memory .40397

2: Controls & MCI Visual memory 1.00000
Backward series 1.00000
Delayed story memory: cued recall 1.00000
Immediate story memory: free recall .99999
Delayed story memory: free recall .99999
Age .99896
Digit-symbol .21181
Immediate story memory: cued recall .02487
Education .00138
Similarities .00001
Semantic fluency .00001
Temporal orientation .00001

3: Controls & AD Visual memory .87715
Education .83429
Semantic fluency .81618
Immediate story memory: free recall .81072
Temporal orientation .79918
Delayed story memory: free recall .76317
Backward series .66772
Digit symbol .31101
Immediate story memory: cued recall .23355
Age .02053
Delayed story memory: cued recall .01758
Similarities .01556

Note. MCI = mild cognitive impairment; AD = Alzheimer’s disease.

TABLE 4
Variables into the linear discriminant function

Substudy 1 Substudy 2 Substudy 3

Step Input variable
Wilks’s
lambda Input variable

Wilks’s
lambda Input variable

Wilks’s
lambda

1 Delayed story memory:
cued recall

.44∗ Delayed story memory:
cued recall

.69∗ Temporal orientation .41∗

2 Temporal orientation .31∗ Backward series .62∗ Delayed story memory:
cued recall

.31∗

3 Backward series .28∗ Visual memory .59∗ Backward series .28∗
4 Visual memory .26∗ Education .57∗ Education .26∗
5 Education .24∗ Temporal orientation .56∗ Visual memory .25∗
6 Semantic fluency .24∗ Semantic fluency .24∗
7 Delayed story memory:

free recall
.23∗

∗p < .0001.
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10 QUINTANA ET AL.

TABLE 5
Comparison of predictive performance of linear discriminant analysis and artificial neural networks

Substudy Sample included LDA (%) ANN (%)

1 Controls, MCI, and AD 79.9 66.67
2 Controls and MCI 80 98.33
3 Controls and AD 96.4 100

Note. Percentage of subjects correctly classified. LDA = linear discriminant analysis; ANN = artificial
neural networks; MCI = mild cognitive impairment; AD = Alzheimer’s disease.

to the fact that all three diagnosis groups were
included. Nevertheless, the percentage of correct
classification was high (66.67%). This result could
be explained by the model’s difficulty in separat-
ing the intermediate group, the MCI patients. In
fact, the same effect is obtained applying LDA.
The common characteristics of MCI patients and
healthy controls (such as the conservation of fixed
cognitive functions), and MCI patients and AD
patients who had impaired episodic memory, might
have been the cause. The result is, however, consis-
tent with the heterogenic concept of MCI (DeCarli,
2003; Petersen et al., 2001), which overlaps in a
similar manner with other examples of clinical diag-
nosis, such as normal aging and AD. In fact, when
we excluded the AD group (Substudy 2), the per-
centage of correctly classified subjects increased
considerably (98.33%). And, finally, when we only
included healthy controls and AD patients, the
ANN model classified all subjects with an error
average of 2%. Consequently, through the results of
the input variables included in ANN, we could pre-
dict diagnosis with an accuracy that varied accord-
ing to the complexity of decision. Only in the first
substudy was the minimal classification of LDA
better than that of ANN (79.9% vs. 66.67%, respec-
tively). In this case, LDA showed similar difficul-
ties in separating the intermediate group, the MCI
patients.

With respect to importance and sensitivity within
the ANN model, in Substudy 1 semantic fluency
was the most significant factor for patient classifica-
tion. Impaired semantic fluency has been reported
as a sign in MCI and AD disease (Murphy, Rich, &
Troyer, 2006; Stokholm, Vogel, Gade, & Waldemar,
2006). Multiple cognitive processes are involved in
the execution of a semantic fluency task—these
include semantic memory, phonological process,
executive function, and general speed of process-
ing (Adlam, Bozeat, Arnold, Watson, & Hodges,
2006; Moreno-Martínez, Laws, & Schulz, 2008;
Radanovic et al., 2009; Raoux et al., 2008). On
the other hand, the delayed story memory (free
recall) was the most important input in the second

ANN model for both healthy controls and MCI
patients. Both free recall and cued recall have
been shown to be sensitive measures for MCI
diagnosis (Dubois & Albert, 2004; Ritchie, Artero,
& Touchon, 2001) and predictors of conversion
from MCI to AD (Artero, Tierney, Touchon, &
Ritchie, 2003; Dierckx et al., 2009). Finally, visual
memory was the most important variable for the
classification of healthy controls and AD patients.

In addition, the sociodemographic variable, years
of education, showed high importance when we
included two groups (Substudies 1 and 2). A
large quantity of evidence indicates that educa-
tion, as a variable of cognitive reserve, protects
against the appearance of cognitive symptoms of
aging and AD (Rentz et al., 2010; see Stern, 2002,
for review). In the case of age, the effect is the
contrary.

With respect to sensitivity, immediate story mem-
ory (free recall) was the most sensitive measure
within the ANN in the first substudy. In the second
model, backward series as a measure of work-
ing memory, delayed story memory (free and cued
recall), and visual memory showed the highest
values. Episodic memory assessment, through list
learning test and/or story memory task (Rabin
et al., 2009) is essential due to the fact that impair-
ment in episodic memory is a typical sign of pro-
dromal dementia—for example, amnestic MCI. In
the latter case, the sensitivity values showed that
the majority of these variables fit impaired cognitive
functions in AD.

In this study, no direct comparison was made
between the results obtained by ANN and LDA
because both logical and technical models belong
to different analysis, and therefore it would be
more complex to develop here a model of contrast
between the two results. The LDA is a linear model
structure based on the concept of the general linear
model, whereas ANN, which is based, as quoted in
the paper, on models of transition, is not necessar-
ily linear and is more like the logic of procedures
such as Markov chains, with no single pattern from
which to fit.
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ARTIFICIAL NEURAL NETWORKS IN NEUROPSYCHOLOGY 11

In situations involving clinical decisions with
a large number of predictive variables and, as
a consequence, with a high degree of complex-
ity in reaching an adequate diagnostic decision,
the application of neural networks may represent
a potential solution. ANN models have flexibil-
ity, in a wide variety of areas, to perform with
significant diagnostic accuracy. They resemble the
brain in several aspects (Haykin, 2008). On the
one hand, they acquire knowledge through a learn-
ing process, where the intensity of the interneuron
connections is used to store knowledge (Sánchez
& Analis, 2006). On the other hand, ANNs can
recognize complex patterns, manage data, learn
the hidden relationship among different variables,
and resolve classification problems or prediction of
results (Buscema et al., 2004).

Neural networks present a series of advantages.
First, they are nonlinear systems. As mentioned
above, AD is a good model to explore the use-
fulness of ANNs as it is a slow-paced progressive
disease in which cognitive deterioration follows a
nonlinear course and, as with aging, its course is
curvilinear (Doody et al., 2001; Embretson & Reise,
2000; Mungas & Reed, 2000; Tandon et al., 2006).
A priori, ANNs do not require initial principles
or data restrictions, such as distribution assump-
tions (e.g. normal distribution; Sargent, 2001).
They are parallel-distributed systems that are flex-
ible and failure tolerant (Lisboa & Taktak, 2006).
Furthermore, an ANN is capable of “learning” and,
as a result, the network is able to transform entry
and exit data. ANNs can also work with imprecise
data, given their capacity to learn and generalize.
A further advantage is their adaptability (i.e., their
capacity to modify their parameters, even in real
time), and, as adaptable systems, they are able to
solve complex problems through the combination
of multiple factors or simultaneous variables (Di
Luca et al., 2005). Moreover, as distributed systems,
ANNs allow for the failure of some neurons with-
out significantly altering the overall response of the
system and can, therefore, be considered as failure-
tolerant systems. They can work with incomplete,
noisy, and inconsistent information and provide
uniformity in analysis and design through joint
theories that describe the different algorithms and
applications. ANNs are also analogous to biologi-
cal networks (Haykin, 2008; Ramesh et al., 2004).

In our study, ANNs were more efficient in their
ability to correctly classify MCI and AD patients
and separating them from control subjects than
was LDA. Several previous studies in ANNs have
compared the efficiency of these models with other

statistical approaches such as logistic regression or
LDA, and ANNs have demonstrated superior per-
formance (Buscema et al., 2004; Di Luca et al.,
2005; French et al., 1997; Grossi et al., 2007;
Leighty et al., 2008; Page et al., 1996). Despite these
arguments, in the field of health sciences, classical
statistical methods are still preferred, for reasons
that include their relative simplicity and the wide
availability of statistical programs (Sargent, 2001).

With respect to the application of our results,
it is particularly important to bear in mind that
the neural-network models used do not facilitate
diagnosis. In other words, the diagnosis is already
known, as we are using a multilayer perceptron
based on a supervised-learning paradigm, and, as
a result, the network learns entry and exit patterns.
Therefore, ANNs should be considered instruments
for pattern classification and function prediction
that can help in the taking of clinical decisions; they
are not diagnostic tools.

Our study has some limitations. First, ANNs are
considered as “black boxes” to identify relation-
ships, and it is difficult to understand the nature
of the internal representations generated by an
extremely complex network that transforms inputs
into predetermined outputs (Montaño & Palmer,
2003). Moreover, in spite of their wide applica-
tion in different fields, their methodology is little
known in comparison to other statistical techniques
(Sargent, 2001). As regards ANN implementa-
tion, the empirical processes present problems at a
methodological level that are not yet fully solved.
Second, whilst we used the MCI IPA-WHO crite-
ria, we did not classify them into MCI subtypes. In
fact, we assumed that all patients could be amnestic
or multidomain amnestic.

In conclusion, the ANNs were applied to groups
of healthy controls and MCI and AD patients to
predict diagnosis. We obtained excellent classifica-
tory power and more efficient classifier sensitivity
than LDA. These results support previous find-
ings that reported ANNs to be a versatile tool
capable of separating nonlinear associations—for
example, cognition and aging. Furthermore, the
use of ANNs is a novel methodology in neuropsy-
chology. Finally, this approach, as an innovative
and powerful modeling tool, could be increas-
ingly applied to develop predictive models in neu-
roscience and should prove useful for predicting
cognitive impairment.

Original manuscript received 16 June 2011
Revised manuscript accepted 21 September 2011
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